深圳市实测通技术服务有限公司
主营产品: ROHS认证、CE认证、FCC认证、CB认证、FDA认证、UL认证、CCC认证、GS认证、MIC认证、EK认证、PSE认证、E-MARK 认证等国际安全测试认证
美国标准:ASTM F1862《医用口罩抵抗合成血液渗透的标准测试方法(已知速度下的固定体积水平投影)》


标准编号Standard/Code标准名称Standard Title
ASTM F1862医用口罩抵抗合成血液渗透的标准测试方法(已知速度下的固定体积水平投影)


意义和用途

5.1 本测试方法提供了一种评估医用口罩对合成血液渗透性的程序,可用于确定医用口罩的抗渗透性能并对其性能进行排名。但是,该测试方法并未定义可接受的抗渗透水平,因为每个负责的用户组织必须根据其自己的具体应用和条件进行此确定。因此,当使用此测试方法对医用口罩的性能进行声明时,必须描述进行测试的具体条件。

5.2 医用口罩旨在抵抗血液、体液和其他潜在传染性物质的飞溅或喷溅造成的液体渗透。许多因素都会影响体液的润湿和渗透特性,例如液体的表面张力、粘度和极性,以及材料的结构和相对亲水性或疏水性以及口罩本身的设计。血液和体液(不包括唾液)的表面张力范围约为 0.042 至 0.060 N/m。7 为了帮助模拟血液和体液的润湿特性,合成血液的表面张力被调整为接近该表面张力范围的下限。合成血液的最终表面张力为 0.042 ± 0.002 N/m。

5.3 合成血液混合物采用红色染料来辅助目测,并加入增稠剂来模拟血液的流动特性。合成血液并不总是能复制真实血液和其他体液通过防护服材料的极性,因此也不能复制其润湿行为和随后的渗透性。

5.4 在医疗过程中,血管偶尔会被刺破,导致高速血流冲击防护性医用口罩。冲击速度取决于几个因素,其中最重要的是患者的血压。其他因素包括穿孔的大小和与穿孔的距离。由于大穿孔会导致压力和速度迅速下降,因此未使用大穿孔来模拟本测试中考虑的血液飞溅速度范围。此外,该测试方法基于以下假设:医用口罩将靠近(300 毫米或 12 英寸以内)穿孔区域。因此,本测试方法的使用基于选择合适的血压、找到相应的血流或冲击速度,并确定产生该血流速度的阀门时间,如附录 X1 所示。

5.4.1 人体平均血压一般在 10.7 至 16.0 kPa(80 至 120 mmHg)的范围内变化。8 在该测试方法中,医用口罩在对应于 10.7 kPa、16.0 kPa 和 21.3 kPa(80 mmHg、120 mmHg 和 160 mmHg)的流速下进行测试。

5.5 本测试方法允许使用其他非标准测试压力、流速、流体量和样品方向来评估与特定应用一致的医用口罩抗穿透性。

5.6 本测试方法与测试方法 F1670/F1670M 的不同之处在于,本测试方法将 2 mL 合成血液喷洒到完整医用口罩样本的目标区域,而测试方法 F1670/F1670M 则要求防护服样本在一小时内与合成血液持续接触。测试方法 F1670/F1670M 中,一分钟的暴露时间是在 13.8 kPa [2.0 psig] 的静水压力下。测试方法 F1670/F1670M 与使用微生物挑战的测试方法 F1671/F1671M 结合使用,用于初步评估防护服对合成血液的抗穿透性。这两种程序都旨在评估可能长时间接触血液或其他体液并在压力下工作的防护服。

5.7 本测试方法的用户必须意识到,在提高医用口罩对合成血液渗透的抵抗力和降低口罩材料上的压降(作为医用口罩透气性的指标)之间存在一定的权衡。一般而言,提高医用口罩的合成血液渗透抵抗力会导致相同设计和适合个人佩戴者的医用口罩的压降增加或透气性降低。

5.8 This test method evaluates medical face masks as an item of protective clothing and does not evaluate medical face masks as respirators. If respiratory protection for the wearer is needed, a NIOSH-certified respirator must be used. This test method is useful to evaluate the resistance of a respirator to penetration by synthetic blood, if warranted.

5.9 This test method involves the preconditioning of specimen medical face masks in a relatively high humidity environment (85 ± 5 % relative humidity at 21 ± 5 °C [70 ± 10 °F]) to simulate the conditions of use when the wearer creates high humidity conditions by breathing through the mask. This preconditioning does not account for saturation of the interior medical face mask layer. However, additional pretreatment techniques in conjunction with this test method as described in 5.10 are permitted. Professional healthcare providers recommend that medical face masks be replaced when saturation occurs from breathing or from contact with other liquids.

5.10 Testing prior to degradation by physical, chemical, and thermal stresses which could negatively impact the performance of the protective barrier, could lead to a false sense of security. Consider tests which assess the impact of storage conditions and shelf life for disposable products, and the effects of laundering and sterilization for reusable products. The integrity of the protective clothing is occasionally compromised during use by such effects as flexing and abrasion.9 It is also possible that pre-wetting by contaminants such as alcohol and perspiration also compromises the integrity of the protective clothing. If these conditions are of concern, evaluate the performance of protective clothing for synthetic blood penetration following an appropriate pretreatment technique representative of the expected conditions of use.

5.11 While this test method involves a qualitative determination of the medical face mask resistance to penetration by synthetic blood under specific test conditions, it is possible to use this test method as a material quality control or assurance procedure.

5.12 If this procedure is used for quality control, perform proper statistical design and analysis of larger data sets when more than the required specimens are tested. This type of analysis includes, but is not limited to, the number of individual specimens tested, the average percent passing or failing, or both, with a standard deviation. Data reported in this way help to establish confidence limits concerning product performance. Examples of acceptable sampling plans are found in references such as ANSI/ASQC Z1.4 and ISO 2859-1.

5.13 In the case of a dispute arising from differences in reported results when using this test method for acceptance testing of commercial shipments, conduct comparative tests between the purchaser and supplier to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for investigation of bias. At minimum, take a group of test specimens which are as homogeneous as possible and which are from a lot of the product of the type in question. Randomly assign test specimens in equal numbers to each laboratory for testing. Compare the average results from the two laboratories using a non-parametric test for unpaired data and an acceptable probability level chosen by the two parties before testing is begun. If a bias is found, either its cause must be found and corrected or the purchaser and the supplier must agree to interpret future test results with consideration to the known bias.

1. Scope

1.1 This test method is used to evaluate the resistance of medical face masks to penetration by the impact of a small volume (~2 mL) of a high-velocity stream of synthetic blood. Medical face mask pass/fail determinations are based on visual detection of synthetic blood penetration.

1.2 This test method does not apply to all forms or conditions of blood-borne pathogen exposure. Users of the test method must review modes for face exposure and assess the appropriateness of this test method for their specific application.

1.3 This test method primarily addresses the performance of materials or certain material constructions used in medical face masks. This test method does not address the performance of the medical face mask’s design, construction, or interfaces or other factors with the potential to affect the overall protection offered by the medical face mask and its operation (such as filtration efficiency and pressure drop). Procedures for measuring these properties are contained in Test Method F2101 and MIL-M-36954C.

1.4 This test method does not address breathability of the medical face mask materials or any other properties affecting the ease of breathing through the medical face mask. This test method evaluates medical face masks as an item of protective clothing. This test method does not evaluate the performance of medical face masks for airborne exposure pathways or in the prevention of the penetration of aerosolized body fluids deposited on the medical face mask.

1.5 The values stated in SI units or inch-pound units are to be regarded separately as standard. The pressure values stated in each system are not exact equivalents. However, as the corresponding velocities are within 1 % of each other, (see X1.4.2), reporting of the results in either units is permitted.

1.6 本标准并不旨在解决与其使用相关的所有安全问题(如果有)。本标准的使用者有责任在使用前制定适当的安全和健康措施并确定监管限制的适用性。

1.7 本国际标准是根据世界贸易组织技术性贸易壁垒(TBT)委员会《关于制定国际标准、指南和建议的原则的决定》中确定的国际公认的标准化原则制定的。

测试项目测试名称: ASTM F1862 合成血液渗透性医用口罩抗合成血液渗透性测试方法

测试要求 测试要求: 

见下面报道摘要

Sample Size 样品数量 / 送样规格: 64pcs
Lead Time / TAT (Turn around Time) 测试: 周期服务 常规服务 15 个工作日


报告摘要 报告摘要:

ASTM F1862

 

展开全文
相关产品
拨打电话 发送询价